梦见吃饺子
【摘要】初级统计师《统计学和统计法基础知识》在进行时间数列分解时,一般把时间数列的构成因素按性质和作用分为四类:即长期趋势、季节变动、循环波动和不规则变动。
在进行时间数列分解时,一般把时间数列的构成因素按性质和作用分为四类:即长期趋势、季节变动、循环波动和不规则变动。
长期趋势:时间数列在长时期内呈现出来的某种持续上升或持续下降的变动称为长期趋势。是对未来进行预测和推断的主要依据。长期趋势往往是由某些固定的、系统性的因素造成的。代表着研究对象的总发展方向,它既可以是线性的,也可以是曲线的。
季节波动:时间数列在一年内重复出现的周期性波动称为季节波动。季节波动中“季节”一词不仅仅是指一年中的四季,其实它是广义的指任何一种周期性的变化。
循环变动:时间数列呈现出来的围绕长期趋势的一种波浪形或震荡式变动称为循环变动,也称作周期变动。周期性变动没有固定规律,其循环的幅度和周期的波动性很强,而且其周期短的一般也要3-5年,长的可达几十年。
时间数列分析的一项主要内容就是把这几个影响因素从时间数列中有目的的分离出来,或者说对数据进行分解、清理,并将他们的关系用一定的数学关系式予以表达。
加法模型:假定四种变动因素相互,时间数列各时期发展水平是各个构成因素的总和。用数学表达为:Y=T+S+C+I
乘法模型:假定四种变动因素彼此间存在着交互作用,时间数列各时期发展水平是各个构成因素的乘积,其数学表达式:Y=T?S?C?I
需要说明:加法模型中,各个因素都是绝对数,乘法模型中,除了长期趋势是绝对数外,其他因素都是以相对数或指数的形式出现的。
建立趋势性方程之前,首先要确定趋势的形态,最常用的方法是先画散点图。若散点图属直线趋势形态,可拟合直线方程;若为曲线形态,则拟合曲线方程。
线性趋势是指现象随着时间的推移,时间数列的逐期增减量大致相等,从而呈现出稳定增长或下降的线性变化规律。